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Abstract: Seismic-induced liquefaction prediction is an important application of classification problems. 
Machine learning offers evolutionary prediction models. Moreover, Ensemble learning is a recent 
advancement in this field, where a number of learners are trained and their inferences are integrated to 
produce stable as well as improved generalization ability. There has been very limited work on the utilization 
of ensemble learning in the field of interest. In this work, a review of some of the useful ensemble learning 
approaches available in the literature is presented. A comprehensive analysis of eight ensemble models is 
performed using five machine learners and three ensemble approaches. The results demonstrate improved 
prediction performance and diminishing uncertainty of ensembles, compared with single models. 

1 INTRODUCTION 

Traditionally, techniques used to determine the liquefaction susceptibility of soil mainly rely on informed-
determination of liquefaction threshold from observed soil behavior records. The state-of-the-art 
contributing to this field mainly rely on the development of better usage of such information. The major 
variables used in developing liquefaction prediction models are the Standard Penetration Test (SPT), Cone 
Penetration Test (CPT) and Shear Wave Velocity (Baez, Martin, & Youd, 2000; Bolton Seed, Tokimatsu, 
Harder, & Chung, 1985; Glaser, 1996; Juang, Chen, Tang, & Rosowsky, 2000; Kayen et al., 2013; Mola-
Abasi, Kordtabar, & Kordnaeij, 2018; Robertson, 2015). At least one of these variables is included as a 
descriptor to infer the liquefaction event of the site of interest. Moreover, the literature utilizes these 
variables in different merits when developing their modeling technique. 

Recently, machine learning techniques have been proposed in the broad literature and provided superior 
performance in learning complex relationships while maintaining a reliable generalization ability. The most 
common machine learning models used in the specific problem of seismic-induced liquefaction prediction 
are Support Vector Machines (SVMs) (Hoang & Bui, 2018), Decision Trees (DTs) (Ardakani & Kohestani, 
2015), Artificial Neural Networks (ANNs) (Juang et al., 2000), and Extreme Learning Machines (ELMs) 
(Samui, Jagan, & Hariharan, 2016). These techniques have the common trait of being categorized under 
Supervised Learning techniques, where the target of the learning process is identified and a functional 
mapping between some explanatories and the target states is then produced by the specific model. 
Obviously, this process is of empirical nature and requires available intelligence, or information, that 
prompts the learning of functional mapping.  

Ensemble learning is generally defined as the process of generating multiple prediction models, which are 
trained using subsets of the available training data and then fused to make a prediction, either for 
classification or regression applications. Figure (2) depicts the major identity components of Ensemble 
modeling and the general classification of Ensembles in the literature. Ensemble learning has received 
lately a significant interest. Continuous work has been conveyed in the broad literature to discuss the 
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effectiveness of ensemble modeling (Benkeser, Ju, Lendle, & van der Laan, 2018; Krawczyk, Minku, Gama, 
Stefanowski, & Woźniak, 2017; Luo, Wang, Yue, Liu, & Guo, 2018). Generally, for a learning framework to 
be considered an ensemble model, it should have three fundamental elements (or stages);  

(1) Resampling: The process of generating multiple training samples, i.e. resamples, from the available 
sample. Common resampling methods are Bootstrap and Jackknife. Detailed information related to 
important resampling plans are reported by Bradly (Efron, 1982). The most common resampling technique 
in the literature is bootstrapping, where simple random sampling, with replacement, is carried out to create 
the resamples. 

(2) Sub-ensemble model generation and training: Training and validating the individual models separately, 
in-parallel or in-series, depending on the adopted ensemble architecture. In this stage, each individual 
model will use the data from a corresponding resample in order to be trained. Because each resample is 
expected to comprise different sets of observations from the original dataset, the sub-ensemble models will 
each have a different optimal solution to their parameters. In this stage, if a new observation is inputted in 
the individual models, the corresponding estimate of the output observation, i.e. the individual estimates, 
will vary among these models. 

(3) Ensemble integration: The process of fusing the sub-ensemble estimates into one result, called the 
ensemble estimate. In classification problems, the simplest, and most common, ensemble integration 
procedure is majority voting.  

In addition, ensemble learning frameworks are divided into two broad clusters; Homogeneous ensembles 
and Non-Homogeneous ensembles (Brown, 2011; C. Zhang & Ma, 2012; Z.-L. Zhang, Luo, Yu, Yuan, & 
Tang, 2018). In Homogeneous ensemble frameworks, we adopt the same resampling technique, the same 
version of a certain model, and only one integration technique. For example, a learning framework that 
uses Jackknife resampling to generate the resamples, logistic regression with the same input-output 
configuration (generated multiple times and trained, each, using a different resample), and majority voting 
as a combiner, is considered an ensemble model. Non-Homogeneous ensemble frameworks are ensemble 
models which violate the definition of homogenous ensembles, while maintaining the three fundamental 
stages of ensemble learning. In the previously mentioned example, if individual models have different input-
output configurations where some use all the available descriptor variables while others do not, the resulting 
ensemble model is of Non-homogeneous nature. While this group of ensembles is an open-ended one, the 
creation of non-homogeneous ensembles allows for innovative learning architectures. A common use of 
Non-Homogeneous ensemble frameworks is usually used by hyperspectral image classification studies 
called sub-space ensemble learning (Polikar, 2012; Z.-L. Zhang et al., 2018). In this work, Homogeneous 
learning frameworks are adopted to show the improved prediction performance of ensemble models. In 
addition, Homogeneous ensemble learning is recently picking up pace in the literature (Mitchell, 1997; 
Polikar, 2012). In following section, the diversity-in-learning concept is presented. Also, a description of the 
adopted ensemble models is provided. 

2 METHODOLOGY 

2.1 Bagging 

Bagging, formally identified as Bootstrap Aggregation, is one of the most common Ensemble machine 
learning techniques (Breiman, 1996a). In this learning process, k sub-samples are created from the original 
sample set, D, available for training the individual models. Using the bootstrap resampling technique, each 
sub-sample, also called a resample di (i = 1, 2, …, k), is generated using random sampling with replacement. 
In addition, each sub-sample will have the same size as the original sample set, available for training the 
individual models. This resampling plan prompts a uniform distribution for the selection process. Each 
observation in the original dataset will have a probability 1/n of being chosen, where n is the size of the 
original sample set, D.   

The type of the individual models is predetermined and their selection can be based on the type of problem 
tackled and experimental results on single learning trials. Each model will rely on one of the created 



 

   
resamples in order to solve for its optimal configuration, during their training and validation. In this work, 
homogeneous ensembles are considered in general, and as a result all the individual models will be of the 
same type and initial input/output configuration. After all the ensemble members are generated and trained, 
a unique output for the ensemble can be derived by averaging the outputs from these individual models. 
Hence, an ensemble combiner is adopted in the final ensemble learning stage. Suppose that the descriptor 
variables’ observations of a test instance i has been inputted into the k individual models, each of these 
models will have a unique output, or estimate, prediction, etc., and the ensemble output can be calculated 
using majority voting, as follows: 

[1] �̂�𝑖,𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =  𝑟𝑜𝑢𝑛𝑑 (
1

𝑘
∑�̂�𝑖,𝑗

𝑘

𝑗=1

) , �̂�𝑖,𝑗 ∈ [0,1]  

where �̂�𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 is the resulting ensemble output, and �̂�𝑖,1 is the output from the first individual model, 

describing the estimate of ith test instance. 

It is important to note that equation (1) relies on the 1/0 configuration of the binary classification problem, 
and other modification can be used if the classes are assigned two different numbers. Because Bagging is 
essentially a parallel ensemble learning framework, the described algorithm can be parallelized in the 
computational environment. To this extent, it is obvious that the main diversity-in-learning effect is expected 
to manifest from the resampling plan adopted in Bagging. Distinct training data is used to enforce a 
spectrum of solutions to the individual models and, in return, provide various estimates most which are 
expected to provide improved prediction. The majority voting elects the ensemble output, eliminating the 
outlier estimates. Depending on the sub-ensemble models used, a diversity effect can also be created from 
the individual models if they are known to produce locally-optimum solutions to their configuration even if 
trained using the same dataset. The improved generalization ability of Bagging has been discussed and 
shown over many case studies in the broad literature (Alobaidi, Chebana, & Meguid, 2018; M. Cao et al., 
2017; Erdal & Karakurt, 2013). 

2.2 Stacking 

Stacking is an ensemble technique that deals with the ensemble integration particularly (Wolpert, 1992). 
To create the stacking combiner, an additional model is used to learn how to combine the individual 
members, by tuning its weights over the feature space. To demonstrate the Stacking strategy, we start with 
the simplest linear combination. Suppose we derive k sub-samples using a particular resampling technique, 
such as Bootstrap Resampling, and then k individual models are created and trained using the generated 

resamples. The ith pattern (i.e. an instance) has an observed value 𝑠𝑖 and an output, or predicted value, �̂�𝑖,𝑗 

obtained from the jth sub-ensemble model (j = 1, 2, …, k). Combining the individual predictions and deriving 
the ensemble output using simple averaging is defined in equation (2). Under stacking, we label the 
individual models as level 0 generalizers. At this point, the set of level 0 outputs, for a given pattern, is fed 
to a level 1 generalizer, which is a separate model that is trained to produce the appropriate output. Several 
stacking strategies are available in the literature, and all are based on level 0 and level 1 generalization 
approach.  

For example, the stacking algorithm developed by Breiman (Breiman, 1996b) suggests minimizing the 
following error function: 

[2] 𝐸(𝑐1, 𝑐2, … , 𝑐𝑘) =  ∑ ∑[𝑠𝑖 − 𝑐𝑗 × �̂�𝑖,𝑗]
2

𝑘

𝑗=1

𝑛

𝑖=1

, 𝑐𝑗 ≥ 0  

𝑠𝑖 is the ith observation from the original training dataset. �̂�𝑗 is the estimate for the combiner coefficients, 

which are used to construct the ensemble prediction as follows: 



 

   

[3] �̂�𝑖,𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =  𝑟𝑜𝑢𝑛𝑑 (∑𝑐𝑗 × �̂�𝑖,𝑗

𝑘

𝑗=1

) , �̂�𝑖,𝑗 ∈ [0,1]  

3 EXPERIMENTAL SETUP 

3.1 Data 

The database used in this study has been originally compiled by Tokimatsu and Yoshimi (1983). Moreover, 

the specific dataset used to demonstrate the ensemble learning frameworks is selected by Goh (Goh, 

1994). Eight variables are considered as explanatories to liquefaction potential. The total vertical stress 

(σo), effective vertical stress (σo’), Standardized SPT (N1)60, normalized peak horizontal acceleration (a/g), 

equivalent dynamic shear stress (τav/ σo’), Fines content (F), and the average grain size (D50), are used in 

this study. In addition, 85 observations are available from the final database, where 42 liquefaction 

observation and 43 non-liquefaction observations are recorded. More details on the significance of the 

database and the descriptor variables can be found in (Goh, 1994, 1996). The training and testing datasets 

comprised 59 observations and 26 observations, respectively, following the experimental setup by Goh 

(1996). The significance of the utilized explanatory variables in this study has been thoroughly investigated 

in the relevant literature and used, also in various forms and combination, for the liquefaction potential 

assessment.  

It is important to note that the same input-output configuration is used for all the ensemble members in 

order to achieve an equivalent performance comparison. While this particular database is used in the 

current study, many other databases exist in the literature and can be used. However, a preliminary analysis 

should be carried out in order to determine the optimum explanatory variables from the available database 

as well as determine a class-balancing procedure in case the database has a relatively large difference in 

the number of observations for each class (Galar, Fernandez, Barrenechea, Bustince, & Herrera, 2012). 

The present database has a balanced number of observations in the liquefaction/no-liquefaction classes 

and previous work has already determined the optimality of the eight variables considered (Goh, 1994). 

3.2 Individual Models 

Three different ensemble members are considered in this study. Hence, for each ensemble architecture, 
an ensemble model is created using one of these single models. More precisely, Ensemble-based Logistic 
Regression (ELR), Support Vector Machines (ESVM), Decision Trees and Extreme Learning Machine 
(EELM) models are considered. The ensemble form of Decision Trees is commonly known in the broad 
literature as Random Forests (RF). The literature is abundant with research studies utilizing these five single 
models. 

Because the description of each of the utilized ensemble members is widely available, we do not reiterate 
it here for optimal delivery of information. In addition, the focus of the current study is to demonstrate the 
application of ensemble learning approaches for liquefaction prediction. However, it is important to note 
that an optimal configuration of the single Artificial Neural Networks and Extreme Learning Machines should 
be decided before the ensemble model is created (Bolton Seed et al., 1985; J. Cao, Zhang, Luo, Yin, & Lai, 
2016; Gelbart, Snoek, & Adams, 2014; Goh, 1994). 

3.3 Evaluation Criteria 

For each ensemble model configuration, the training and testing studies are carried out simultaneously. 

Figure (1) shows the flow diagram explaining the ensemble model creation, training and testing phases. 

In order to assess the classification performance of the presented ensembles, Cohen’s Kappa coefficient 

(κ) measure is used. In a binary classification setting, the κ statistic is computed as follows: 



 

   

(4) 𝜿 =  

𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

−
(𝑇𝑃 + 𝐹𝑁) × (𝑇𝑃 + 𝐹𝑃) + (𝑇𝑁 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)2

1 −
(𝑇𝑃 + 𝐹𝑁) × (𝑇𝑃 + 𝐹𝑃) + (𝑇𝑁 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)2

  

which can be reduced to: 

(5) 𝜿 =  
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑅𝐴

1 − 𝑅𝐴
  

where TP and TN are the true positive and true negative values, respectively. In other words, the value of 

TP + TN is the number of correctly classified observations. FP and FN are the false positive and false 

negative values, respectively, making FP + FN equivalent to the number of incorrectly classified 

observations, and TP + TN + FP + FN as the total number of observations.  

The Accuracy of a model is the ratio of correct predictions to the total number of predictions made by the 

model. RA is the probability of having a correct prediction due to chance, given mutually exclusive and 

independent events. It can be shown from Equation (12) that when the Accuracy is maximum, RA does not 

affect the Kappa statistic. This is usually apparent in the training performance of any ensemble model, as 

the training error can achieve a zero value. In all the other cases, RA value will reduce the accuracy and, 

hence, the Kappa statistic will be always less than or equal to Accuracy. 

 

 

 

Figure 1: Proposed simulation approach for the case study. 

4 CONCLUSION 

In this work, a comprehensive study on the application of ensemble learning for seismic induced liquefaction 
prediction is presented. Three ensemble learning frameworks are utilized with five unique machine learning 



 

   
models, summing to eight investigated ensemble models. The application of ensemble learning is 
discussed for the field of interest, and a step-by-step analysis is shown. The added benefit of ensemble 
learning is demonstrated throughout the various targeted testing schemes. A Monte Carlo simulation is 
carried out for each ensemble model in order to further investigate the improved generalization ability of 
ensemble learning. This work is aimed at motivating development of state-of-the-art ensemble approaches 
for regional liquefaction prediction. More research is required to adequately address ensemble learning in 
this field. 

Liquefaction records are of regional and diverse. Hence, two future studies are recommended; the explicit 
utilization of diversity concept in developing ensemble learning models is expected to provide further 
improvement to the prediction. Such approach is expected to capture the patterns usually hidden or weaker 
than the ones on which hyperplanes are simulated by the previous models. Lastly, the binary classification 
nature of this problem allows for investigating models that can modify the magnitude of the explanatory 
variables using a novel learning strategy which links the diverse liquefaction records to the classification 
magnitude. This approach is able to transform the classification problem to a regression problem, which is 
favoured for its more flexible objectives used for deriving the best fit on the available training data. In other 
words, instead of finding the optimal separation plane for the binary classification problem, a magnitude of 
liquefaction index can be constructed with information on the modification required for the liquefaction 
records before including them into the dataset. 
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